Oleanane Saponins from Sanicula elata var. chinensis

Aki Matsushita,† Toshio Miyase,*,† Hiroshi Noguchi,† and David Vander Velde‡

School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Shizuoka 422-8526, Japan, and Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045

Received July 17, 2003

Eleven new oleanane-type triterpenoid saponins, saniculasaponins I-XI (I-11), and a known saponin, sandrosaponin IX (I2), were isolated from the methanol extract of the whole plants of *Sanicula elata* Ham. var. *chinensis* Makino. The structures of the new compounds were elucidated on the basis of chemical and spectroscopic evidence.

Saponins are very rare in the Apiaceae and are only known in *Sanicula, Bupleurum, Centella*, and *Hydrocotyle*. Oleanane-type saponins, saniculosides A-D, $^{1.2}$ N, 3 and R-1, 4 had been isolated from *Sanicula europaea* L. *Sanicula elata* Ham. var. *chinensis* Makino (Apiaceae) has not been used as a medicinal plant in Japan, and the study of its components was not done in detail. As a part of our research on saponins, we have isolated 11 new oleanane-type triterpenoid saponins from *S. elata* var. *chinensis*, named saniculasaponins I-XI (I-11), and a known saponin, sandrosaponin IX (I2).

Results and Discussion

A methanol extract of the whole plants of *S. elata* var. *chinensis* was dissolved in water and extracted with diethyl ether. The water layer was passed through a porous polymer gel Diaion HP-20 column. The methanol eluate was separated by preparative HPLC to afford saponins **1–11** and sandrosaponin IX (**12**).

The FABMS of saniculasaponin I (1) gave a quasi molecular ion peak at m/z 1154, while the ¹³C NMR spectrum revealed 55 carbon signals. The molecular ion peak at m/z 1154 was due to a sodiated molecule [M + Na]⁺, consistent with a molecular formula $C_{55}H_{86}O_{24}$. The ¹H NMR spectrum of **1** (see Table 1) showed signals of an olean-12-ene-type aglycon [seven singlet methyl signals at δ 0.85, 1.02, 1.09, 1.11, 1.25, 1.31, 1.86 and a trisubstituted olefinic proton signal at δ 5.52 (dd, J = 3, 3 Hz)], three anomeric proton signals (δ 4.95, 5.29, 5.66), a methyl signal at δ 2.10 (s) of the acetyl moiety, an olefinic proton signal at δ 5.83 (dq, J = 7, 1.5 Hz), and methyl signals at δ 1.79 (br s) and 2.01 (dq, J = 7, 1.5 Hz), which indicated the presence of an angeloyl moiety in the molecule. In the HMBC spectrum, cross-peaks between H-21 (δ 6.58) and the carbonyl carbon of the acetyl moiety (δ 170.8), C-29 (δ 29.5), and C-30 (δ 20.0) and between H-22 (δ 6.24) and the carbonyl carbon of the angeloyl moiety (δ 168.2), C-16 (δ 73.6), and C-28 (δ 63.2) were observed. Thus, the acetyl moiety and the angeloyl moiety must be linked to C-21 and C-22, respectively. The structure of the aglycon was determined by 1H, 13C, HMQC, and HMBC NMR experiments as 3,21,22-trisubstituted olean-12-ene-3,15,16,21, 22,28-hexaol. The 13 C NMR of C-15 (δ 67.6) and C-16 (δ 73.6) indicated 15α , 16α -orientation of the hydroxyl groups. ^{6,7} The coupling constants (10 Hz) between H-21 and H-22 indicated the diaxial orientation. The ¹H NMR data showed

three anomeric protons, and the sugar moieties of 1 were characterized as a β -D-glucuronopyranose, a β -D-glucopyranose, and a β -D-galactopyranose from the 1D HOHAHA spectrum and acid hydrolysis.8 All of the sugar residues had a β -configuration according to their anomeric proton coupling constants. The positions of the sugar moieties were defined by the HMBC spectrum. Cross-peaks between H-1 of the glucopyranosyl residue (δ 5.66) and C-2 of the glucuronopyranosyl residue (δ 79.0) and between H-1 of the galactopyranosyl residue (δ 5.29) and C-3 of the glucuronopyranosyl residue (δ 88.0) indicated that the glucopyranosyl residue and the galactopyranosyl residue were linked with C-2 and C-3 of the glucuronopyranosyl residue, respectively. Cross-peaks between H-1 of the glucuronopyranosyl residue (δ 4.95) and C-3 of the aglycon (δ 89.5) and reverse cross-peaks between C-1 of the glucuronopyranosyl residue (δ 105.3) and H-3 of the aglycon (δ 3.32) showed that the trisaccharide chain was attached to C-3 of the aglycon. On the basis of these results, the structure of saniculasaponin I (1) was deduced to be 3-*O*-[β -D-glucopyranosyl-(1→2)]- β -D-galactopyranosyl-(1→3)- β -D-glucuronopyranosyl-21-*O*-acetyl-22-*O*-angeloyl- 3β , 15α , 16α , 21β , 22α , 28-hexahydroxyolean-12-ene.

The FABMS of saniculasaponin II (2) gave a quasi molecular ion peak at m/z 1124 [M + Na]⁺, 30 mass units less than that of 1 and in accordance with the molecular formula C₅₄H₈₄O₂₃. The ¹H and ¹³C NMR spectra were similar to those of 1 (see Tables 1 and 2). The ¹H NMR spectrum showed signals for an acetyl and an angeloyl moiety and three anomeric protons. On acid hydrolysis, D-glucuronic acid, D-glucose, and L-arabinose were detected.8 The HMBC spectrum indicated that the glucopyranosyl residue and the arabinopyranosyl residue were linked to C-2 and C-3 of the glucuronopyranosyl residue and that the trisaccharide chain was attached to C-3 of the aglycon. Thus, saniculasaponin II (2) was identified as 3-O-[β -D-glucopyranosyl-(1→2)]-α-L-arabinopyranosyl-(1→3)- β -D-glucuronopyranosyl-21-O-acetyl-22-O-angeloyl-3 β ,15 α , $16\alpha,21\beta,22\alpha,28$ -hexahydroxyolean-12-ene.

Saniculasaponin III (3) had a molecular formula of $C_{54}H_{84}O_{23}$, identical to that of **2**, as determined from FABMS data (see Experimental Section). The 1H and ^{13}C NMR spectra were very similar to those of **2**. The HMBC spectrum showed that the positions of the acetyl and the angeloyl moieties were different from **1** or **2**. The HMBC correlations (see Tables 1 and 2) indicated that the angeloyl and the acetyl groups were attached to C-21 and C-22, respectively. Therefore, saniculasaponin III (**3**) was assigned as 3-O- $[\beta$ -D-glucopyranosyl- $(1\rightarrow 2)$]- α -L-arabino-

^{*} To whom correspondence should be addressed. Tel and Fax: +81-54-264-5661. E-mail: miyase@ys7.u-shizuoka-ken.ac.jp.

[†] University of Shizuoka.

[‡] University of Kansas.

Chart 1

pyranosyl- $(1\rightarrow 3)$ - β -D-glucuronopyranosyl-22-O-acetyl-21-O-angeloyl- 3β , 15α , 16α , 21β , 22α ,28-hexahydroxyolean-12-ene.

The FABMS of saniculasaponin IV (4) exhibited a quasi molecular ion peak at m/z1124 [M + Na]⁺, consistent with molecular formula $C_{54}H_{84}O_{23}$. On comparison, the NMR data of the sugar moieties were the same as those of 3. The 1H and ^{13}C NMR data showed the low-field shifts of H-28 and C-28 (see Tables 1 and 2) due to the acylation. Thus, saniculasaponin IV (4) was identified as $3\text{-}O[\beta\text{-}D\text{-}glucopyranosyl-(1\rightarrow2)]-}\alpha\text{-}L\text{-}arabinopyranosyl-(1\rightarrow3)-}\beta\text{-}D\text{-}glucuronopyranosyl-28-}O\text{-}acetyl-21-}O\text{-}angeloyl-3}\beta$,15 α , 16α ,2 1β ,22 α ,28-hexahydroxyolean-12-ene.

The FABMS data of saniculasaponin V (5) afforded a quasi molecular ion peak at m/z 1342 [M + Na]⁺, which

indicated the molecular formula $C_{63}H_{98}O_{29}$. The 1H NMR spectrum of **5** revealed signals typical for a saponin, with seven singlet methyl protons and an olefinic proton at δ 5.51, two methyl signals at δ 1.90 (s) and 2.03 (s) due to acetyl groups, a methine proton at δ 6.06 (dq, J=7, 1.5 Hz), and methyl signals at δ 1.96 (br s) and 2.19 (dq, J=7, 1.5 Hz) of an angeloyl moiety. The sugar analysis by GC revealed D-glucuronic acid, D-glucose, D-galactose, and L-rhamnose. The 1H NMR data displayed four sugar anomeric proton signals. The low-field shifts of C-2 and C-4 of the rhamnopyranosyl residue (δ 74.3 and 75.4) and the HMBC correlation between H-2 and H-4 of the rhamnopyranosyl residue (δ 5.78 and 5.62) and the two acetyl carbonyl carbons (δ 170.6 and 170.8) indicated that the two acetyl moieties were linked to C-2 and C-4 of the rham-

Table 1. 1H NMR Data (δ) of Compounds 1–11 in C_5D_5N

		1		2	3		4		5	6
aglycon	3	3.32 (dd, 12, 4)		, 12, 4) <i>p</i> ,†	3.32 (dd, 1	2, 4) ^{p,†}	3.32 (dd, 12, 4) ¹	,†	3.30 (dd, 12, 4) [†]	3.30 (dd, 12, 4) ^{r,†}
	5	0.83^{α}	0.83^{α}	0.0	0.84^{α}	0)	0.84^{α}		0.81^{α}	0.80^{α}
	12 15	5.52 (dd, 3, 3) 4.22 ^α	5.52 (dd 4.22^{α}	, 3, 3)	5.50 (dd, 3, 3) 4.19^{α}		5.54 (dd, 3, 3) 4.29 ^α		5.51 (dd, 3, 3) 4.21 ^α	5.51 (dd, 3, 3) 4.22^{α}
	16	4.44^{α}	4.22 4.44^{α}		4.40^{α}		4.65 (d, 4)		4.44^{α}	4.40^{α}
	18	3.06^{α}	3.09^{α}		3.07^{α}		2.81 (dd, 14, 4)		2.98^{α}	2.98^{α}
	21	$6.58 (d, 10)^{h,i,n}$	6.58 (d,		6.59 (d, 10)		6.50 (d, 10) f,g,h		$5.01 (d, 10)^{h,i,t}$	5.01 (d, 10) ^{h,i,u}
	22	6.24 (d, 10) ^{b,g,j}	6.24 (d,	$10)^{b,g,j}$	6.18 (d, 10)	b,g,n	4.44 ^{α,b,e}		6.15 (d, 10) ^{b,gj}	6.15 (d, 10) ^{b,g,j}
	23 24	1.25 (s) 1.11 (s)	1.24 (s) 1.10 (s)		1.10 (s)		1.23 (s) 1.09 (s)		1.24 (s) 1.10 (s)	1.23 (s) 1.09 (s)
	25	0.85 (s)	0.85 (s)		0.85 (s)		0.87 (s)		0.84 (s)	0.85 (s)
	26	1.02 (s)	1.02 (s)		1.02 (s)		1.16 (s)		1.02 (s)	1.02 (s)
	27	1.86 (s)	1.85 (s)		1.84 (s)		1.85 (s)		1.84 (s)	1.84 (s)
	28	3.51 (d, 11) ^e	3.51 (d,		3.45 (d, 11)		$4.35^{\alpha,I}$		3.41 (d, 11)	3.41 (d, 11)
	28 29	$3.76 (d, 11)^f$ $1.09 (s)^c$	3.76 (d, 1.09 (s) ^c		3.70 (d, 11) 1.10 (s) ^c)1	1.13 (s) ^c		$3.71 (d, 11)^f$ $1.22 (s)^c$	$3.71 (d, 11)^f$ $1.23 (s)^c$
	30	1.31 (s)^d	1.03 (s) ^a		1.30 (s)^d		1.30 (s)^d		1.22 (s) ^d	1.23 (s) ^d
ster moie		1.01 (3)	1.02 (3)		1.00 (3)		1.00 (3)		1.22 (3)	1.20 (3)
ıngeloyl	3	5.83 (dq, 7, 1.5)	5.83 (dq	, 7, 1.5)	5.98 (dq, 7,		5.90 (dq, 7, 1.5)	m	6.06 (dq, 7, 1.5)	6.06 (dq, 7, 1.5)
	4	2.01 (dq, 7, 1.5)			2.11 (dq, 7,		2.19 (dq, 7, 1.5)	i	2.19 (dq, 7, 1.5) ¹	2.19 (dq, 7, 1.5) ¹
	5	1.79 (br s) k,m	1.79 (br	s) ^{k, m}	$2.02 \; (br \; s)^k$	r,m	1.98 (br s) i,k		1.96 (br s) k,m	1.96 (br s) k,m
cetyl		aglycon	aglycon		aglycon		aglycon		C-2 of Rha	C-2 of Rha
		$2.10 (s)^{o}$	$2.10 (s)^{o}$		1.78 (s) ^o		$1.96 (s)^m$		2.03 (s) ⁿ C-4 of Rha	2.03 (s) ⁿ C-4 of Rha
									1.90 (s) p	$1.90 (s)^p$
sugar moi	iety	GlcA	GlcA		GlcA		GlcA		GlcA	GlcA
5	1	4.95 (d, 8) a,†	4.98 (d,	8) ^{a,†}	4.98 (d, 8) ^a	<i>,</i> †	4.98 (d, 8) ^{a,†}		4.94 (d, 8) ^{a,†}	4.97 (d, 8) a,†
	2	4.42^{α}	4.48^{α}		4.48^{α}		4.47^{α}		4.42^{α}	4.48α
	3	4.33α	4.38^{α}		4.37α		4.37 ^α		4.33 ^α	4.37 ^α
	4 5	$4.52^{lpha} \ 4.54^{lpha}$	4.48^{lpha} 4.58^{lpha}		4.48 ^α 4.58 (d, 10)	1	4.47 ^α 4.58 (d, 10)		4.52^{α} 4.54^{α}	4.48 ^α 4.45 (d, 10)
	J	Glc	Glc		Glc	'	Glc		Glc	Glc
	1	5.66 (d, 8) ^q	5.68 (d,	8) ^q	5.68 (d, 8) ^q		5.68 (d, 8)°		$5.66 (d, 8)^{r}$	5.68 (d, 8) ^s
	2	4.06 (dd, 8, 8)	4.08^{α}		4.08^{α}		4.08^{α}		4.06 (dd, 8, 8)	4.08^{α}
	3	4.22 ^α	4.24°	0 0)	4.24^{α}		4.24°		4.23 ^α	4.24°
	4 5	4.13 ^α 3.82 (m)	4.16 (dd 3.84 (m)		4.16 ^α 3.83 (m)		4.16 (dd, 9, 9) 3.85 (m)		4.14^{α} 3.83^{α}	4.16 (dd, 9, 9) 3.84 (m)
	6	4.33α/4.46α	4.33°/4.4		4.33°/4.44°		4.33 ^α /4.46 ^α		$4.32^{\alpha}/4.45^{\alpha}$	$4.33^{\alpha}/4.45^{\alpha}$
		Gal	Ara		Ara		Ara		Gal	Ara
	1	5.29 (d, 8) ^r	5.30 (d,	8) <i>r</i>	5.30 (d, 8) ^r		$5.30 (d, 8)^p$		5.29 (d, 8) ^s	$5.30 (d, 8)^t$
	2	4.48^{α}	4.45^{α}		4.45^{α}		4.46^{α}		4.45^{α}	4.46^{α}
	3 4	$4.13^{lpha} \ 4.46^{lpha}$	$4.09^{lpha} \ 4.23^{lpha}$		$4.10^{lpha} \ 4.24^{lpha}$		4.10^{α} 4.24^{α}		$4.12^{\alpha} \ 4.45^{\alpha}$	$4.10^{lpha} \ 4.22^{lpha}$
	5	4.13^{α}	3.79 (br	d, 12)/	3.79 (br d,	12)/	3.79 (br d, 12)/4	.28α	4.13^{α}	3.79 (br d, 11)/
	6	$4.33^{lpha/}4.48^{lpha}$	4.28^{α}	,	4.28^{α}	ĺ	, , ,		4.33α/N. A.	4.27^{α}
	6	4.33%4.46%							Rha	Rha
	1								5.38 (d, 1.5) ^e	5.38 (d, 1.5) ^e
	2								5.78 (dd, 3, 1.5)°	5.77 (dd, 3, 1.5)°
	3 4								4.70 (dd, 10, 3) 5.62 (dd, 10, 10) ^q	4.70 (dd, 10, 3) 5.61 (dd, 10, 10)
	5								4.25^{α}	4.24^{α}
	6								1.36 (d, 6)	1.36 (d, 6)
			7		8		9		10	11
aglycone			$, 12, 4)^{r,\dagger}$		$1, 12, 4)^{r,\dagger}$		dd, 12, $4.5)^r$			3.32 (dd, 12, 4) q,†
		5 0.84° 12 5.50 (dd	2 2)	0.82 ^α 5.50 (de	1 2 2)	0.92^{α}	dd, 3, 3)	N.A.		0.72 (br. d, 11) 5.44 (dd, 3, 3)
		$\frac{12}{15}$ $\frac{3.30}{4.22^{\alpha}}$, 3, 3)	3.30 (αt 4.22 ^α	1, 3, 3)	4.20 (3.11 (d, 13)/1.93 ^{α,b}
		$16 4.53^{\alpha}$		4.38^{α}		4.75 (5.05	· / /	0.11 (d, 10)/1.00
		$18 3.00^{\alpha}$		3.02^{α}		3.31 (dd, 11, 6)*	3.00		3.05 (dd, 15, 3.5)
		21 4.98 (d,		4.96 (d,		4.38 (s) b,e,j,†,‡,#			4.61 (d, 10) ^{<i>i,j,t</i>}
		22 6.17 (d,	$(10)^{D,g,J}$	6.17 (d,	,		$(s)^{c,d,n,*,\S, ,\P}$	5.12		5.80 (d, 10) ^{c,h,k}
		23 1.24 (s) 24 1.10 (s)		1.23 (s) 1.09 (s)		1.30 (1.03 (1.29 1.01		1.30 (s) 1.10 (s)
		24 1.10 (s) 25 0.85 (s)		0.85 (s)		0.89 (*	0.88		0.83 (s)
		26 1.02 (s)		1.03 (s)		1.00 (*	1.08		0.99 (s)
		27 1.85 (s)		1.85 (s)		1.99 (2.01	(s)	1.33 (s)
		28 3.41 (d,	, ,	3.41 (d,			d, $11)^i$		` ' ' .	$4.24^{\alpha,g}$
			1 1 \ t	3.71 (d,	$11)^{I}$	4.00 (d 11)	4.85	$(d, 11)^d$	
		28 3.71 (d,	,		,					1 17 (-)d
		28 3.71 (d, 29 1.23 (s) ^c 30 1.35 (s) ^d	ŕ	1.24 (s) 1.35 (s)	c	1.39 (1.41	$(\mathbf{s})^{g,m}$	1.17 (s) ^d 1.19 (s) ^e

Table 1. (Continued)

	7	8	9	10	11
ester moiety	angeloyl	angeloyl	angeloyl	angeloyl	acetyl at aglycon
3	6.06 (dq, 7, 1.5)	6.06 (dq, 7, 1.5)	5.96 (dq, 7, 1.5)	5.93 (dq, 7, 1.5)	$2.28 (s)^{l}$
4	$2.19 (dq, 7, 1.5)^{I}$	$2.19 (dq, 7, 1.5)^{I}$	1.98 (dq, 7, 1.5) p	$2.04 (dq, 7, 1.5)^o$	
5	$1.99 (\text{br s})^{k,m}$	$2.00 \; (\text{br s})^{k,m}$	1.85 (br s) o,q	1.90 (br s) n,p	
	acetyl at C-3 of Rha	acetyl at C-3 of Rha			acetyl at C-3 of Rh.
	$1.93(s)^n$	$1.93(s)^n$			$1.94 (s)^n$
	acetyl at C-4 of Rha	acetyl at C-4 of Rha			acetyl at C-4 of Rh
	$2.07(s)^{p}$	$2.07(s)^{p}$			$2.07(s)^{p}$
sugar moiety	GlcA	GlcA	GlcA	GlcA	inner Glc
1	4.93 (d, 8) a,†	4.96 (d, 8) ^{a,†}	5.03 (d, 8) ^a	5.00 (d, 8) ^a	4.95 (d, 8) a,†
2	4.43^{α}	4.46°	4.14 (dd, 8, 9)	4.12^{α}	4.08^{α}
3	4.33^{α}	4.38^{α}	4.32 (dd, 9, 9)	4.31^{α}	4.51^{α}
4	4.50^{lpha}	4.48^{α}	4.60 (dd, 10, 9)	4.60^{α}	4.11α
5	4.52^{α}	4.58 (d, 9)	4.70 (d, 10)	4.70^{α}	3.95^{α}
6		(1, 1,			$4.32^{\alpha}/4.45^{\alpha}$
	Glc	Glc			intermediate Glc
1	5.66 (d, 8)s	$5.68 (d, 8)^{s}$			$5.50 (d, 8)^{r}$
2	4.06^{α}	4.08^{α}			4.18°
3	4.23^{α}	4.25^{α}			4.29^{α}
4	4.13^{α}	4.16 (dd, 9, 9)			4.18^{α}
5	3.82^{α}	3.84 (m)			3.86 (m)
6	$4.32^{\alpha}/4.45^{\alpha}$	$4.33^{\alpha}/4.44^{\alpha}$			$4.35^{\alpha}/4.46^{\alpha}$
	Gal	Ara			terminal Glc
1	$5.29 (d, 8)^t$	$5.30 (d, 8)^t$			$5.36 (d, 8)^s$
2	4.50^{α}	4.46^{α}			4.08α
3	4.12^{α}	4.10^{α}			4.18^{α}
4	4.45^{α}	4.23^{α}			4.10^{α}
5	4.14^{α}	$3.79 \text{ (br d, } 12)/4.28^{\alpha}$			3.97^{α}
6	$4.30^{\alpha}/4.48^{\alpha}$				$4.30^{\alpha}/4.57^{\alpha}$
	Rha	Rha			Rha
1	$5.41 (d, 1.5)^e$	$5.44 (d, 1.5)^e$			$5.58 (d, 1.5)^f$
2	4.81 (dd, 3, 1.5)	4.81 (dd, 3, 1.5)			4.71 (dd, 3, 1.5)
3	5.76 (dd, 10, 3)°	5.75 (dd, 10, 3)°			$5.74 \text{ (dd, } 10, 3)^m$
4	$5.87 (dd, 10, 10)^q$	$5.86 (dd, 10, 10)^q$			5.88 (dd, 10, 10)°
5	4.35^{α}	4.35^{α}			4.44^{α}
6	1.33 (d, 6)	1.33 (d, 6)			1.40 (d, 6)

 $^{a-u}$ The HMBC correlations were observed between carbons that have the same superscripts in the same compound in Table 2. v N.A: not assigned. *.\frac{*}{.}\frac{1}{.}\frac{1}{.}\frac{8}{.}\frac{a}{.} ROE correlation were observed between the protons that have the same superscripts. $^{\alpha}$ Overlapped with other signals.

nopyranosyl residue. The positions of the four sugar residues were determined by HMBC and ROE spectra (see Tables 1 and 2). In the HMBC spectrum, cross-peaks between H-1 of the rhamnopyranosyl residue (δ 5.38) and C-21 (δ 88.0) and reverse cross-peaks between H-21 (δ 5.01) and C-1 of the rhamnopyranosyl residue (δ 100.6) showed that the rhamnopyranosyl residue was connected to C-21. The same conclusion with regard to the rhamnopyranosyl residue was also deduced from ROE experiments. On the basis of these results the structure of saniculasaponin V (5) was assigned as 3-O-[β -D-glucopyranosyl-(1 \rightarrow 2)]- β -D-galactopyranosyl-(1 \rightarrow 3)- β -D-glucuronopyranosyl-21-O-(2,4-diacetyl)- α -L-rhamnopyranosyl-22-O-angeloyl-3 β ,15 α , 16 α ,21 β ,22 α ,28-hexahydroxyolean-12-ene.

The FABMS data for saniculasaponin VI (6) showed a quasi molecular ion peak at m/z 1312 [M + Na]⁺, 30 mass units less than that of **5**, and indicated the molecular formula $C_{62}H_{96}O_{28}$. On acid hydrolysis, the sugar components D-glucuronic acid, D-glucose, L-arabinose, and L-rhamnose were detected.⁸ In comparison with **5**, the ¹H NMR spectrum was very similar, except that the signals due to the β -D-galactopyranosyl residue in **5** were replaced by an α -L-arabinopyranosyl residue in **6**. Hence, the structure of saniculasaponin VI (**6**) was concluded to be 3-O-[β -D-glucopyranosyl-(1 \rightarrow 2)]- α -L-arabinopyranosyl-(1 \rightarrow 3)- β -D-glucuronopyranosyl-21-O-(2,4-diacetyl)- α -L-rhamnopyranosyl-22-O-angeloyl-3 β ,15 α ,16 α ,21 β ,22 α ,28-hexahydroxyolean-12-ene.

Saniculasaponin VII (7) had a molecular formula $C_{63}H_{98}O_{29}$, identical to that of **5**, as determined from a quasi molecular ion peak at m/z 1342 [M + Na]⁺ in the FABMS data. The ¹H and ¹³C NMR spectra were very similar to those of 5; however, the HMBC spectrum indicated that the positions of the two acetyl groups were different from **5**. Cross-peaks between the carbonyl carbon of the acetyl group (δ 170.4) and H-3 of the rhamnopyranosyl residue (δ 5.76) and another acetyl carbonyl carbon (δ 170.3) and H-4 of the rhamnopyranosyl residue (δ 5.87) were observed. Accordingly, the two acetyl moieties were linked to C-3 and C-4 of the rhamnopyranosyl residue. Thus, the complete structure of saniculasaponin VII (7) was defined as 3-O- $[\beta$ -D-glucopyranosyl- $(1\rightarrow 2)$]- β -D-galactopyranosyl- $(1\rightarrow 3)$ - β -D-glucuronopyranosyl-21-*O*-(3,4-diacetyl)-α-L-rhamnopyranosyl-22-O-angeloyl-3 β ,15 α ,16 α ,21 β ,22 α ,28-hexahydroxyolean-12-ene.

Saniculasaponin VIII (8) gave a quasi molecular ion by FABMS at m/z 1312 $[M+Na]^+$, 30 mass units less than 7, and indicated the molecular formula $C_{62}H_{96}O_{28}$. Comparison between the signals observed for 7 and 8 revealed similarity, except that the signals due to the β -D-galactopyranosyl residue in 7 were replaced by an α -L-arabinopyranosyl residue in 8. The sugar components were identified by acid hydrolysis as D-glucuronic acid, D-glucose, L-arabinose, and L-rhamnose.⁸ Thus, the structure of saniculasaponin VIII (8) was assigned as 3-O- $[\beta$ -D-glucopyranosyl- $(1\rightarrow 2)$ - α -L-arabinopyranosyl- $(1\rightarrow 3)$ - β -D-glucurono-

Table 2. ^{13}C NMR Data (δ) of Compounds 1–10 in C_5D_5N

		1	2	3	4	5	6			1	2	3	4		5	6
aglycone	1 2 3 4 5	39.0 26.7 89.5 ^a 39.6 55.6	39.0 26.7 89.5 ^a 39.6 55.6	39.0 26.7 89.5 ^a 39.6 55.6	39.1 26.7 89.5 ^a 39.6 55.6	39.0 26.7 89.5 ^a 39.6 55.5	39.0 26.7 89.5 ^a 39.6 55.5	acetyl	1 2	<i>aglycone</i> 170.8 ^{<i>n,o</i>} 21.1	<i>aglyco</i> . 170.8 ⁿ , 21.1	ne aglycor o 170.8 ^{n,} 20.7		m	2 of	C-2 of
	6 7 8	18.9 36.8 41.5	18.8 36.8 41.5	18.9 36.7 41.4	18.8 36.7 41.5	18.8 36.8 41.5	18.8 36.8 41.5		1 2					RI 17 20	$0.6^{n,o}$	<i>Rha</i> 170.6 ^{<i>n,o</i>} 20.9
	9 10 11	47.2 37.0 24.0 125.5	47.2 47.2 37.0 24.0 125.5	37.0 24.0 125.4	37.0 24.1 125.6	47.2 47.2 37.0 24.0 125.4	37.0 24.0 125.4		1 2					RI	$0.8^{p,q}$	C-4 of Rha 170.8 ^{p,q} 20.8
		143.7	143.7	143.7	143.6	143.7	143.7	suga		GlcA	GlcA	GlcA	GlcA	Gi	'cA	GlcA
	15 16 17 18 19	7 48.4 8 41.1	$\begin{array}{ccc} .6 & 67.6 \\ .6^b & 73.6^b \\ .4 & 48.4 \\ .1 & 41.0 \end{array}$	47.9 67.5 72.7 ^b 48.4 41.0 46.9 36.2	48.0 67.5 72.2 ^b 47.5 41.4 47.0 36.1	47.6 67.7 74.1 ^b 48.7 41.1 47.2 37.4	47.6 67.6 74.1 ^b 48.7 41.1 47.2 37.4	37.6 74.1 ^b 18.7 11.1 17.2		105.3^{p} 79.0^{q} 88.0^{r} 71.9 77.3 171.8	105.5^{p} 79.2^{q} 86.2^{r} 71.5 77.5 171.8	105.4^{p} 79.3^{q} 86.2^{r} 71.5 77.3 171.8	105.4^{n} 79.3^{o} 86.3^{p} 71.5 77.3 171.8	79 87 71 77		105.4^{r} 79.3^{s} 86.2^{t} 71.5 77.3 171.8
	20 21 22 23 24 25 26 27	36.3 79.3 ^{c,d} 73.5 ^{e,f} 27.9 16.8 17.6 21.3	36.3 79.3 ^{c,d} 73.5 ^{e,f} 27.9 16.8 15.7 17.6 21.2	78.9 ^{c,d} 74.2 ^{e,f} 27.9 16.8 15.9 17.6 21.1	81.2 ^{c,d} 71.1 27.9 16.8 15.9 17.7 21.1	88.0 ^{c,d,e} 74.6 ^f 27.9 16.8 15.8 17.6 21.2	88.1 ^{c,d,e} 74.6 ^f 27.9 16.8 15.8 17.6 21.2		1 2 3 4 5 6	Glc 104.0 76.4 78.6 72.7 77.7 63.5	Glc 103.8 76.4 78.6 72.6 77.8 63.4	Glc 103.8 76.4 78.6 72.6 77.8 63.4	Glc 103.8 76.4 78.6 72.6 77.7 63.4	76 78 78 72 77 63	3.9 .4 .6 .6	Glc 103.8 76.4 78.6 72.6 77.8 63.4
ester moie angeloyl	ety	63.2 ^g 29.5 ^h 20.0 ⁱ	63.2 ^g 29.5 ^h 20.0 ⁱ	63.4 ^g 29.5 ^h 20.2 ⁱ 167.9 ^{j,k}	65.9 ^e 29.8 ^f 20.1 ^g	63.5 ^g 30.5 ^h 20.0 ⁱ	63.5 ^g 30.5 ^h 20.0 ⁱ		1 2 3 4	Gal 105.3 73.0 75.4 70.2	Ara 105.2 72.9 74.7 69.7	Ara 105.2 72.9 74.7 69.7	Ara 105.2 72.9 74.7 69.8	Ga 10 73 75 70	5.3 .0 .4	Ara 105.2 72.9 74.7 69.7
	2 3 4	129.2 ¹ 136.6 ^m 15.8	129.2 ¹ 136.6 ^m 15.8	129.0 ¹ 137.1 ^m 15.8	129.6^{j} 136.7^{k} 15.9	129.2 ¹ 138.9 ^m 16.1	129.2 ¹ 138.9 ^m 16.1		5	77.4 62.0	67.8	67.8	67.8	77 62	.3	67.7
	5	20.7	20.7	20.9	21.0	21.0	21.0		1 2 3 4 5					RI 10 74 67 75 67 18	0.6 ^t .3 .6 .4 .7	Rha 100.6 ^u 74.3 67.6 75.4 67.7 18.0
		7	8	9	10	11	l			7		8	9	10		11
aglycone	1 2 3 4	39.0 26.7 89.5 ^a 39.6	39.0 26.7 89.5 ^a 39.6	38.9 26.7 89.5 ^a 39.5	39.0 26.7 89.0 39.5	26.6 88.9	a	tyl		C-3 of 1 170.4 ¹ 2 20.8	1,0	70.5 ^{n,o} 0.8			C-3 170. 20.7	
	5 6 7 8	55.5 18.8 36.8	55.6 18.8 36.8	55.6 18.7 35.9	55.6 18.7 35.8 41.6	55.7 18.3 32.6				C-4 of 1 170.3 ^p 2 20.8	p,q 1	C-4 of Rha 70.4 ^{p,q} 0.8			C-4 170. 20.8	
	9 10 11 12 13 14 15 16	24.0 125.5 143.7 47.6 67.5	41.5 47.2 37.0 24.0 125.5 143.7 47.6 67.6 74.3^b		47.2 37.0 24.1 3 124.1 6 145.4 47.5 69.1	46.7 36.7 23.9 6 125. 6 140. 40.0 45.2	sug 4 0	armoiet	y	GlcA 1 105.3 ^t 2 79.0 ^s 3 88.0 ^t 4 71.8 5 77.3 6 171.8	1 7 8 7 7 1	$GlcA$ 05.4^r 9.3^s 6.2^t 1.5 7.4	75.6 78.2 73.5 77.8	GlcA 107.2 75.6 78.2 73.4 78.0 N.D.	inne 104. 83.6 78.3 70.9 77.7 63.1	Γ
	17	48.7	48.7	51.5	50.5					Glc	(Glc			inte Glc	rmediate
	18 19 20 21 22 23 24	47.2 37.4 88.4 ^{c,d} 74.8 ^f 27.9	41.1 47.2 37.4 88.4 ^{c,} 74.8 ^f 27.9 16.8	$\begin{array}{c} 41.1^{a} \\ 36.9^{e} \\ 44.3 \\ 45.6^{f} \\ 78.7^{i} \\ 28.2 \\ 17.0 \end{array}$	37.14 43.6 5g,h 88.44	f 46.3 37.2 g,h 84.7 75.3 28.2	d,e,f g			1 104.0 2 76.4 3 78.6 4 72.6 5 77.7 6 63.5	7 7 7 7	03.8 6.4 8.6 2.6 7.8 3.4			103. 85.7 77.6 71.9 77.6 62.7	S
	25		15.8	15.6	15.6					Gal	A	lra			tern Glc	ninal
ester moie	26 27 28 29 30 ety	$21.2 \\ 63.5^g \\ 30.4^h$	17.6 21.2 63.5^g 30.5^h 20.1^i	17.9 23.1 59.0 $24.6^{j.}$ 70.2^{n}		$ \begin{array}{r} 27.1 \\ 65.9 \\ i,j,k \\ 30.1 \end{array} $	h i			1 105.3 2 73.3 3 75.4 4 72.0 5 77.4 6 62.0	7 7 6	05.2 2.9 4.7 9.7 7.8			106. 76.8 77.7 71.3 79.3 62.9	

Table 2. (Continued)

		7	8	9	10	11		7	8	9	10	11
angeloyl	1	$168.2^{j,k}$	$168.2^{j,k}$	168.1 ^{n,o}	167.9 ⁿ							
0 0	2	129.2^{I}	129.2^{I}	128.2^{p}	128.5^{o}			Rha	Rha			Rha
	3	138.8^{m}	138.8^{m}	139.2^{q}	137.8^{p}		1	104.0^{u}	104.0^{u}			103.5^{t}
	4	16.0	16.1	16.0	16.0		2	69.7	69.7			69.6
	5	20.9	20.9	20.6	20.8		3	73.0	73.3			73.1
							4	72.1	72.1			71.9
acetyl						aglycon	5	67.8	67.9			68.2
J						$170.3^{k,l}$	6	17.9	17.9			17.8
						20.8						

 $^{a-u}$ The long-range HMBC correlations were observed between protons that have the same superscripts in the same compound in Table 1. v N.D.; not detected.

pyranosyl-21-O-(3,4-diacetyl)- α -L-rhamnopyranosyl-22-O-angeloyl-3 β ,15 α ,16 α ,21 β ,22 α ,28-hexahydroxyolean-12-ene.

The FABMS of saniculasaponin IX (9) gave a quasi molecular ion peak at m/z 785 [M + Na]⁺ and indicated the molecular formula C₄₁H₆₂O₁₃. The ¹H NMR spectrum displayed two methine singlets at low field (δ 4.38 and 6.15), an angeloyl moiety, and an anomeric proton (δ 5.03). HMQC data showed that the methine protons could be attributed to H-21 (δ 4.38) and H-22 (δ 6.15). The HMBC experiments supported this conclusion and showed correlations between the proton at δ 4.38 and C-29 (δ 24.6) and C-19 (δ 36.9) and between the proton at δ 6.15 and C-18 (δ 41.1). Long-range HMBC correlation between H-22 and the carbonyl carbon of the angeloyl moiety (δ 168.1) revealed that the angeloyl moiety was linked to C-22 (δ 78.7). On acid hydrolysis, D-glucuronic acid was detected.8 In the ¹³C NMR spectrum, the low-field shift of C-30 (δ 70.2) indicated that the hydroxyl group was connected to C-30. Furthermore, the ¹³C NMR data showed that C-16 (δ 82.1) and C-21 (δ 85.6) were at low field. It is suggested that the low-field shifts are due to dehydration between OH-16 and OH-21, with formation of a five-membered ether ring. Therefore, the dihedral angle between H-21 and H-22 falls near 90°, so that the coupling of these two protons causes the signals to appear like a singlet. The HMBC data showed a correlation between H-21 and C-16, supporting this suggestion. Accordingly, H-21 was β -oriented. This assignment was supported by the ROE enhancements observed for H-21 and H-22 on irradiation of H-30 (δ 3.78 and 4.00). Thus, the structure of saniculasaponin IX (9) was assigned as 3-O-β-D-glucuronopyranosyl-22-O-angeloyl- 3β , 15α , 22α , 28, 30-pentahydroxy- 16α , 21α -epoxyolean-12-

The FABMS data of saniculasaponin X (**10**) showed a quasi molecular ion peak at m/z 785 [M + Na]⁺, which supported a molecular formula of $C_{41}H_{62}O_{13}$. The ¹H NMR spectrum was very similar to that of **9**, which showed two methine singlets of H-21 and H-22 at low field (δ 4.45 and 5.12), an angeloyl group, and one anomeric proton at δ 5.00. In the ¹H and ¹³C NMR experiments, H-28 (δ 4.46 and 4.85) and C-28 (δ 62.5) were located at low field compared with **9**. These data suggested that the angeloyl moiety was attached to C-28. Consequently, the structure was assigned as 3-O- β -D-glucuronopyranosyl-28-O-angeloyl-3 β ,15 α ,22 α , 28,30-pentahydroxy-16 α ,21 α -epoxyolean-12-ene.

Saniculasaponin XI (11) had a molecular formula $C_{60}H_{94}O_{27}$ as determined from a quasi molecular ion peak at m/z 1270 [M + Na]⁺ in its FABMS spectrum. An NMR experiment showed that the aglycon of 11 differed slightly from that of the other compounds. The 1H NMR spectrum showed signals of an olean-12-ene-type aglycon, four anomeric protons, three methyl singlets (δ 1.94, 2.07, and 2.28), and a set of methylene protons at δ 1.93 (overlapped) and

3.11 (d, J = 13 Hz). The HMQC and HMBC spectra defined that the methylene signals were assigned to C-15 of the aglycon (δ 45.2). The ¹³C NMR displayed a carbonyl carbon at low field (δ 211.3). The long-range HMBC coupling between H-22 (δ 5.80) and the carbonyl carbon at δ 211.3 established that the carbonyl was at C-16 of the aglycon. Further supporting information was obtained from the observed HMBC between H-15 (δ 1.93, 3.11) and the ketonic carbonyl carbon. Thus, the aglycon was determined to be 3,21,22-trisubstituted olean-12-ene-16-keto-3,21,22, 28-tetraol. The ¹H NMR data showed four anomeric protons at δ 4.95 (d, J = 8 Hz), 5.36 (overlapped), 5.50 (d, J = 8Hz), and 5.58 (d, J = 1.5 Hz) together with a methyl signal at δ 1.40 (d, J=6 Hz), suggesting the presence of a rhamnopyranosyl residue. On acid hydrolysis, D-glucose and L-rhamnose were detected.8 The 1D HOHAHA experiment revealed that these sugars were three D-glucoses and a L-rhamnose. The positions of sugar components were determined by HMBC and ROE studies (see Tables 1 and 2). Therefore, the structure of saniculasaponin XI (11) was assigned as 3-O- β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopylanosyl-21-O-(3,4-diacetyl)- α -L-rhamnopyranosyl-22-O-acetyl-3β,21β,22α,28-tetrahydroxyolean-16-keto-12-ene.

Experimental Section

General Experimental Procedures. Optical rotations were taken on a JASCO DIP 1000 digital polarimeter. NMR spectra were recorded in C_5D_5N on a JEOL $\alpha\text{-}400$ instrument at 400 MHz for 1H and 100 MHz for ^{13}C NMR at 35 °C. Mass spectral data were obtained on a JEOL JMS-SX 102 mass spectrometer. Preparative HPLC was performed on a JASCO system 800 instrument. GC was performed on a Hitachi G-3000 instrument.

Plant Material. Sanicula elata var. chinensis was collected in Shizuoka, Japan, in July 2001 and identified by Prof. Akira Ueno, School of Pharmaceutical Sciences, University of Shizuoka. A voucher specimen is deposited at the herbarium of University of Shizuoka, No. 20010728.

Extraction and Isolation. Dried whole plants of *S. elata* var. *chinensis* (720 g) were extracted with MeOH. The MeOH extract was concentrated under reduced pressure to give 109 g of residue, which was dissolved in H_2O and then extracted with diethyl ether. The H_2O layer was applied to a Mitsubishi Diaion HP-20 column (9 × 45 cm), and the adsorbed material was eluted with 40% MeOH (10 L), then with MeOH (8 L) to give 40% MeOH eluate (3.2 g) and MeOH eluate (6.6 g). Three grams of MeOH eluate was subjected to HPLC (column ODS, 5×100 cm, solvent CH_3CN-H_2O (15:85) \rightarrow (31:69) linear gradient, flow rate 45 mL/min, detection UV 205 nm) to afford 37 fractions. Fractions 27–36 were subjected further to preparative HPLC to give compounds 1-12.

Saniculasaponin I (1): 41.6 mg; amorphous powder; $[\alpha]^{23}_D$ –31.5 (c 2.40, C_5H_5N); 1H and ^{13}C NMR, see Tables 1 and 2; FABMS m/z 1154 $[M+Na]^+$.

Saniculasaponin II (2): 26.6 mg; amorphous powder; $[\alpha]^{23}$ _D −24.5 (c 1.22, C₅H₅N); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS m/z 1124 [M + Na]⁺

Saniculasaponin III (3): 49.2 mg; amorphous powder; $[\alpha]^{23}_D$ -19.1 (c 2.38, C₅H₅N); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS m/z 1124 [M + Na]⁺.

Saniculasaponin IV (4): 12.8 mg; amorphous powder; $[\alpha]^{23}_D$ +2.20 (c 0.66, C₅H₅N); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS m/z 1124 [M + Na]⁺.

Saniculasaponin V (5): 18.8 mg; amorphous powder; $[\alpha]^{23}$ _D -32.1 (c 0.93, C_5H_5N); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS m/z 1342 [M + Na]⁺.

Saniculasaponin VI (6): 18.6 mg; amorphous powder; $[\alpha]^{23}_D$ -33.7; (c 0.90, C_5H_5N); 1H and ^{13}C NMR, see Tables 1 and 2; FABMS m/z 1312 [M + Na]⁺.

Saniculasaponin VII (7): 8.2 mg; amorphous powder; $[\alpha]^{23}_{\rm D}$ –120.5 (\bar{c} 0.39, C₅H₅N); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS m/z 1342 [M + Na]⁺.

Saniculasaponin VIII (8): 27.0 mg; amorphous powder; $[\alpha]^{23}_D$ -10.0 (c 0.13, C₅H₅N); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS m/z 1312 [M + Na]⁺.

Saniculasaponin IX (9): 18.8 mg; amorphous powder; $[\alpha]^{23}_D$ +17.9 (c 0.62, C₅H₅N); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS m/z 785 [M + Na]⁺.

Saniculasaponin X (10): 2.8 mg; amorphous powder; $[\alpha]^{23}$ _D -0.00 (c 0.15, C_5H_5N); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS m/z 785 [M + Na]⁺

Saniculasaponin XI (11): 18.0 mg; amorphous powder; $[\alpha]^{23}_D$ -42.1 (c 0.88, C_5H_5N); 1H and ^{13}C NMR, see Tables 1 and 2; FABMS m/z 1270 [M + Na]⁺.

Sandrosaponin IX (12): 19.8 mg; amorphous powder; $[\alpha]^{23}_D$ -7.3 (\bar{c} 0.97, C₅H₅N); ¹H NMR (\bar{C}_5D_5N , 400 MHz) δ 6.31 (1H, d, J = 8 Hz, anomeric of Glc at C-28), 5.38 (1H, d, J = 8Hz, anomeric of Gal), 5.23 (1H, d, J = 8 Hz, anomeric of Glc), 5.06 (1H, d, J = 8 Hz, anomeric of GlcA), 3.86 (1H, m, Glc-5), 3.30 (1H, dd, J = 12, 4 Hz, H-3), 3.18 (1H, dd, J = 14, 4.5 Hz, H-18), 1.31 (3H, s, H-23), 1.25 (3H, s, H-27), 1.14 (3H, s, H-24), 1.08 (3H, s, H-26), 0.90 (3H, s, H-29), 0.88 (3H, s, H-30), 0.83 (3H, s, H-25); 13 C NMR (C₅D₅N, 100 MHz) aglycon (C-1 \rightarrow 30) δ 38.8 (CH₂), 26.6 (CH₂), 89.5 (CH), 39.6 (C), 55.9 (CH), 18.6 (CH₂), 32.6 (CH₂), 40.0 (C), 48.0 (CH), 37.0 (C), 23.5 (CH₂), 123.0 (CH), 144.1 (C), 42.2 (C), 28.3 (CH₂), 23.8 (CH₂), 47.1 (C), 41.8 (CH), 46.3 (CH₂), 30.8 (C), 34.1 (CH₂), 33.2 (CH₂), 28.3 (CH₃), 16.9 (CH₃), 15.6 (CH₃), 17.5 (CH₃), 26.1 (CH₃), 176.4 (C=O), 33.2 (CH₃), 23.7 (CH₃), GlcA (C-1→6) 105.0, 84.1, 77.7, 72.3, 77.7, 172.4, Gal (C-1→6) 104.4, 84.5, 75.0, 69.0, 76.4, 61.5, Glc (C-1→6) 106.5, 76.7, 77.8, 71.2, 79.2, 62.6, Glc at C-28 (C-1→6) 95.8, 74.2, 79.0, 71.3, 79.3, 62.4; FABMS m/z 1142 [M + $Na]^+$.

Acid and Alkaline Hydrolysis of Saponins. Each saponin (1 mg) was dissolved in 1 M NaOH (200 μ L) and stirred for 3 h at room temperature. The solution was then acidified with 2 M HCl (300 μ L) and extracted twice with EtOAc. For ester analysis, the EtOAc layer was washed with H₂O, O-(4nitrobenzyl)-N,N-diisopropylisourea (1 mg) was added, and then the mixture was heated at 80 °C for 1 h. The reaction mixture was concentrated, and the residue was subjected to HPLC analysis (column Develosil PhA (Nomura Chemical), 4.6 mm × 25 cm, solvent CH₃CN-H₂O (45:55), flow rate 1.0 mL/ min, detection UV 273 nm) for detection of esters. Acetic acid $(t_R, 9.4 \text{ min})$ was detected for **1–8** and **11** and angelic acid $(t_R, 9.4 \text{ min})$ 20.6 min) for 1-10. The H₂O layer was heated 100 °C for 1 h. The solution was diluted with H₂O and extracted twice with EtOAc. Then AgCO₃ (3 mg) was added to the H₂O layer, and the mixture was stirred and centrifuged. The supernatant was concentrated, and the residue was dissolved in pyridine (30 μL) containing D-cysteine methyl ester (3 mg) and stirred for 1.5 h at 60 °C. After derivatization, a mixture of hexamethyldisilazane and trimethylsilyl chloride (9:1, $20 \mu L$) was added to the solution and stirred for 30 min at 60 °C. The reaction solution was centrifuged, then the supernatant was analyzed by GC (column Supelco SPB-1, 0.25 mm × 27 m, column temperature 215 °C, carrier gas N_2). D-Glucuronic acid (t_R , 15.6 min) was identified for 1-10, D-glucose (t_R , 20.7 min) for 1-8and 11, D-galactose (t_R , 22.8 min) for 1, 5, and 7, L-arabinose $(t_R, 11.9 \text{ min})$ for **2–4**, **6**, and **8**, and L-rhamnose $(t_R, 13.8 \text{ min})$ for 5-8 by comparing their retention times with those of authentic samples.8

References and Notes

- (1) Hiller, K.; Linzer, B.; Pfeifer, S.; Tokes, L.; Murphy, J. Pharmazie **1968**, *23*, 376-387.
- Kuehner, K.; Voigt, G.; Hiller, K.; Rabe, H.; Franke, P.; Dube, G.; Habisch, D. Pharmazie 1985, 40, 576-578.
- (3) Arda, N.; Gören, N.; Kuru, A.; Pengsuparp, T.; Pezzuto, M. J.; Sheng-XIang, Q.; Cordell, A. G. J. Nat. Prod. 1997, 60, 1170-1173.
- (4) Schöpke, Th.; Janka, M.; Nimtz, M.; Wray, V.; Hiller, K. Planta Med. **1998**, *64*, 83-85.
- Sánchez-Contreras, S.; Díaz-Lanza, M. A.; Bernabé, M. J. Nat. Prod. 2000, 63, 1479-1482.
- (6) Seo, Y.; Berger, M. J.; Hoch, J.; Neddermann, M. K.; Bursuker, I. J. Nat. Prod. 2002, 65, 65-68.
- (7) Herlt, J. A.; Mander, N. L.; Pongoh, E.; Rumampuk, J. R.; Tarigan, P. J. Nat. Prod. 2002, 65, 1115-120.
- (8) Hara, S.; Okabe, H.; Mihashi, K., Chem. Pharm. Bull. 1986, 34, 1843-1844.

NP030316V